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Avicenna’s Mereology of the Predicables

Paul Thom
The University of Sydney

Abstract:

The account of genus, species and differentia in Avicenna’ Pointers and
Reminders satisfies the core axioms of mereology, but accepts Supplementation
for genus and differentia only in a negative sense. Genera of a shared species
must be mutually subordinated, and consequently if a species has no
constitutive differentia all its parts overlap with its genus. It is not ruled out that
a species may have no constitutive differentia. It is not required that the genus

be inseparable from the differentia.

There is a different mereology in The Cure, where a broad sense of ‘genus’ is
introduced alongside the narrow sense of Pointers. For genera in the broad
sense, Supplementation does not hold even in a negative sense: the higher
differentia is in some cases a genus to the lower differentia — in which cases the

genus and the lower differentia share an intensional part.



Localizing finite-depth Kripke models

Mojtaba Mojtahedi

Tehran University

Abstract:
We can look at a first-order (or propositional) intuitionistic Kripke model as an

ordered set of classical models. In this talk, we show that for a finite-depth

Kripke model in an arbitrary first-order language or propositional language L
classical truth of a formula is equivalent to non-classical truth (truth in the Kripke
semantics) of a Friedman's translation of that formula, i.e. a IFAp if and only if a

= A. The sentence p (called localizer) only depends on the Kripke model and

the node ¢ and is independent from A . We show that localizers for infinite-
depth nodes of Kripke models might not exist.

Based on the depth of the counter-model for the instances of the Principle of the
Excluded Middle PEM, we introduce slices for PEM and then we will go through
some refinement of this fact by showing that localizers might be chosen from the
first slice PEM1. We introduce some applications of this fact.

In [1] Ardeshir and Hesam, showed that every rooted narrow Kripke model of
HA is locally PA. A frame is called narrow if there is no infinite set of pairwise
incomparable nodes. We extend the result of [1] and show that semi-narrow
Kripke models of Heyting Arithmetic HA are locally PA.

[1] M. Ardeshir and B. Hesaam, Every Rooted Narrow Tree Kripke Model of
HA is Locally PA, Mathematical Logic Quarterly, 48 (2002), no. 3, 391--395.



Large cardinals, forcing axioms,

and mathematical realisms.
David Aspero.

School of Mathematics, University of East Anglia

Zermelo-Fraenkel set theory with the Axiom of Choice, ZFC, is the standard
foundation for mathematics. As initially proved by Kurt Goedel in the 1930’s with
his First Incompleteness Theorem, ZFC is intrinsically incomplete, in the sense
that there are statements expressible in the language of set theory which are
nevertheless undecided on the basis of ZFC. Even more, every reasonable
extension of ZFC remains incomplete in the same way. Later, in 1963, Paul
Cohen showed, with the use of the forcing method, the existence of lots of natural
mathematical statements which are undecided by ZFC, the most famous of which
i1s Cantor’s Continuum Hypothesis (CH). It is therefore natural to search for
additional natural axioms which, when added to ZFC, suffice to decide such
questions as CH. The need to find such axioms is all the more urgent if we assume
a realist standpoint, whereby the cumulative hierarchy of sets describes a uniquely
specifiable object. According to such a view, a question such as ~"How many real
numbers are there?’’, which of course CH answers, should have a unique solution
in this hierarchy.

Large cardinal axioms form a natural hierarchy of axioms extending ZFC.
They indeed tend to build a hierarchy, in the sense that any two of these axioms,
A and A’, are compatible, and in fact often comparable (i.e., A implies A’ or A’
implies A). These lie beyond the scope of what ZFC can prove, and in fact they
transcend ZFC in that they cannot be proved to be consistent assuming just the
consistency of ZFC (in this sense, they are different from axioms such as CH, or
its negation, both of which can be proved, by forcing, to be consistent together
with ZFC). This is essentially the content of Goedel’s Second Incompleteness
Theorem. Moreover, it is a remarkable empirical fact that all natural mathematical
theories can be interpreted within ZFC+A for some suitable large cardinal axiom
A. Unfortunately, despite their realist appeal conferred to them by the above
(especially their lying in a natural hierarchy), large cardinal axioms do not settle
such statements as CH.

Forcing axioms are another family of axioms, naturally arising from the use
of forcing in set theory, which do decide questions such as CH, and others. It has
been recently proved that sufficiently strong such axioms do decide a lot of
statements pertaining to low levels of the cumulative hierarchy (in which CH can
be expressed), and in fact provide complete descriptions of such fragments of the
universe modulo forcing. In recent joint work with Matteo Viale, we have shown
that there are in fact several such strong forcing axioms, providing incompatible
pictures of the low levels of the cumulative hierarchy. Completeness modulo
forcing at this level is therefore an insufficient criterion for deciding between
these axioms.

I will analyse the consequences of this state of affairs vis a vis several realist
conceptions of mathematics.



Shelah Cardinals: A Fleeting Glimpse

Ali Sadegh Daghighi

Amir Kabir University

Shelah cardinals, which lie between Woodin and supercompact cardinals in
the consistency strength hierarchy, were originally introduced by Shelah in
connection with some problems in measure theory and descriptive set
theory. An uncountable cardinal k is called Shelah, if for every function
f:xk — Kk there exists an elementary embedding j:V —» M with crit(j) =k
such that M* € M and Vj)() & M. Later Gitik and Shelah introduced the
generalized notion of an A-Shelah cardinal for a set A € «k*. It is based
on the definition of a Shelah cardinal with functions restricted to the set A.

Investigating preservation of large cardinals under various classes of forcing
notions started by the work of Levy and Solovay, who showed that
measurable cardinals are preserved under small forcing notions. Later
works revealed the fact that besides measurable cardinals, the same result
holds for a wide range of large cardinals as well. We prove an analogue of the
Levy-Solovay theorem for Shelah cardinals, by showing that Shelah cardinals
are preserved under relatively small forcing notions. We also prove that
(k" N V) - Shelah cardinals are preserved by Woodin's fast function forcing.

Furthermore, we consider the Laver Diamond Principle. It is
a generalization of the classical Diamond Principle isolated by Hamkins as a
new combinatorial axiom. We prove that such a principle holds for Shelah
cardinals. Similar results are already obtained by Laver, Gitik and Shelah for
other large cardinals including supercompact and strong cardinals.

Finally we use the already obtained Laver function for Shelah cardinals to
prove an analogue of Laver's supercompact indestructibility theorem for
Shelah cardinals by showing that Shelah cardinals can be made indestructible
under < k-directed closed forcings of size < wt(x) where wt(kx) denotes the
witnessing number of k.

This presentation is based on a joint work with Massoud Pourmahdian [1].
References:

[1] A. S. Daghighi and Massoud Pourmahdian, On Some Properties of Shelah
Cardinals, Bulletin of the Iranian Mathematical Society, Accepted. (2017)
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Uniform Interpolation for BPL

Majid Alizadeh

School of Mathematics, Statistics and Computer Science,
College of Science, University of Tehran, Tehran, Iran

majidalizadeh@ut.ac.ir

Masoud Memarzadeh
School of Mathematics, Statistics and Computer Science,
College of Science, University of Tehran, Tehran, Iran
m.memarzadeh@ut.ac.ir

We say logic L has Craig Interpolation property if Lo — y implies existence of
v(p) such that p is subset of intersection of atoms of ¢ and y and L+¢ — % and
Ly — . The uniform interpolation property is, in a sense, the generalization of
Craig interpolation property. If instead of two formulas, we restrict the
interpolant to one formula and a subset of its propositional variables (which are
to be the shared variables), we reach a stronger definition: a uniform right-
interpolant for ¢(q, p) with respect to p is a formula y(p) such that for all
formulas y(p, ) with Lo — v, x acts as an interpolant for ¢ and y. The
uniform left-interpolant is defined analogously. A logic whose formulas have
both left and right interpolants is said to satisfy the uniform interpolation
property (UIP). In this talk, we give a proof of UIP for Visser’s Basic
Propositional logic (BPL), a sub-logic of Intuitionistic Propositional Logic (IPL)

by using a model theoretic technique developed by Visser.
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On the logic of induction and co-induction

Bahareh Afshari
Goteborgs Universitet
Modal mu-calculus is the extension of propositional modal logic by constructors
for fixed points of inductive and co-inductive definitions. Semantically, the logic
acquires much of the expressive power of second-order logic over graphs.
Syntactically, however, the calculus remains weak as almost all natural questions
for this logic (such as validity and model checking) are decidable. This contrast
together with the ubiquity of inductive definitions in formal reasoning has
established modal mu-calculus as an important system in both mathematical
logic and theoretical computer science. In this talk I will introduce mu-calculus,
highlight key proof- and model-theoretic properties, and give recent results on

finitary proof systems for the calculus.



Axiomatizing Mathematical Theories:
Multiplication and Order

Ziba Assadi & Saeed Salehi

University of Tabriz

A structure is a first-order language with a non-empty set that is closed under the
operations of the language. The theory of a structure is the set of all the first-
order sentences (in the language of that structure) that are true in the structure.
The ordered structures of natural, integer, rational and real numbers will be
studied here. A set is called decidable when there exists a single-input Boolean-
output algorithm that outputs 'yes' on an input if and only if it belongs to that set
(and outputs 'no’ otherwise). It is known that the theories of the natural, integer,
rational and real numbers in the language of order are decidable and finitely
axiomatizable. Let us recall that the theory of a structure is decidable if and only
if it can be axiomatized by a computably enumerable set of sentences. Also, the
theories of the natural, integer, rational and real numbers in the language of order
and addition are decidable and infinitely axiomatizable. For the language of order
and multiplication, it is known that the theories of the natural and integer
numbers are not decidable (and so they are not axiomatizable by any computably
enumerable set of sentences). Tarski's celebrated theorem on the axiomatizability
of the field of the real numbers by the theory of the real closed (ordered) fields
implies that the multiplicative ordered structure of the real numbers is decidable
also; we will give a direct proof for this result with an explicit axiomatization.
The structure of the rational numbers in the language of order and multiplication
seems to be missing in the literature; in this talk we will show the decidability of
its theory by the technique of quantifier elimination and after presenting an
infinite axiomatization for this structure we will prove that it is not finitely

axiomatizable.
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Cut free Sequent Calculus For F

N. Aboolian! and M. Alizadeh?

University of Tehran

Corsi studied Kripke semantics in which no assumption of persistency is made.
These sublogics of intuitionistic logic has a more strict implication and negation.
Ishigaki and Kashima introduced cut-free sequent calculus for these logics. Their
proof systems have the serious drawback of using a rule with arbitrary number of
premises. In this talk we introduce a cut-free sequent calculus for the logic F of all
Kripke frames in which no assumption of persistence is made. Corsi Axiomatized
F and showed that its modal counterpart is K.

In order to introduce a sequent calculus for F, we extend our formulas by a new
implication which will work as intuitionistic implication. Let F°=F(L) U {A > B
| A, B € F}. Note that we have not altered the language. A © B is an auxiliary
expression. We do not allow nesting of o.

We call I strict implicational if every A in I is of form B—C.
Here we present the rule for implication in our the system GF~ .

A T° =B

I'=>A—>B
where I' is strict-implicational.

We have proved the following admissibility results for GF~ :

Theorem 1.GF~ enjoys cut elimination theorem.

Lemma 2.If GF~+ T" = C, then there exists a cut-free and (=>)-free proof for I'
I?e‘? F be finite multiset of elements in Fand C € F .

Theoran 3 (main result).

GFP+I'=>C if and only if ' C

1 n.aboolian@ut.ac.ir
2 majidalizadeh@ut.ac.ir
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Bounded arithmetic is obtained from first-order Peano arithmetic by restricting
the induction scheme to bounded formulas. | first consider bounded arithmetic
theories introduced by Samuel Buss. | review some basic results concerning
these theories and their relations to Computational Complexity. Then | consider
bounded arithmetic theories based on intuitionistic logic introduced by Stephen
Cook and Alasdair Urquhart. | review some of my own results concerning

intuitionistic bounded arithmetic obtained during these past several years.
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NIP inside a model and Baire 1 definability

Karim Khanaki
Arak University of Technology

Anand Pillay

University of Notre Dame
Abstract:
Using results of Bourgain, Fremlin, and Talagrand in [1], we show that for a

countable structure M, a saturated elementary extension M* of M and a formula
@(x,y) the following are equivalent:

()  @(x,y)is NIP igv, that is, there do not exist sequencés;);.,, in M
and(b;);~, In M* such thatp(a;, b)) iffi € I.
(i)  Wheneverp(x) € S,(M") is finitely satisfiable iV then it is Baire 1
definableover M.
Also we point out that if @(x,y) is NIP in a (not necessarily countable) structure

M, then there are at most 2/M! global M-finitely satisfiable ¢-types.

Background: Recently, Anand Pillay wrote a short note and showed that a
formula @(x,y) on a structure M has NOT order property iff every type p in

Se(M) has an extension to a type q in S,(M*) (where M* is a saturated

elementary extension of M) such that q is both definable over and finitely
satisfiable in M. He pointed out that a model theoretic proof of this equivalence
was given by him in 1982. In fact, this is a well-known result essentially due to
Alexander Grothendieck in 1955 which asserts that ¢(x,y) has NOT order
property on M iff a suitable set of functions is relatively weakly compact. Of
course, this connection was formerly known by many people, including Ben
Yaacov 2014, who showed that NOP in a model implies definability of types,
and Pillay's note is a commentary on the topic, i.e. NOP in a model implies
definability of “coheirs”, and vice versa. The purpose of the present note is to

show that a similar result holds for the NIP case.
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On the Axiomatization of Intuitionistic Linear

Temporal Logic of Dynamical Systems
Somayeh Chopoghloo

Shahid Beheshti University
Abstract.
The logic ITL® is a variant of intuitionistic linear temporal logic (intuitionistic
LTL) that is interpreted over the class of dynamic topological systems. A dynamic
topological system is a pair (X, f) where X is a topological space and f is a

continuous function on X. If X is an Alexandrov space, (X, f) is called a dynamic
Alexandrov system.

In this paper, we consider the logic ITL®,, i.e. intuitionistic LTL interpreted
over the class of dynamic Alexandrov systems. This logic is the same as the logic
ITL®, i.e. intuitionistic LTL interpreted over the class of dynamic Kripke frames.
A dynamic Kripke frame is a birelational structure of the form (W, R, f) where R
Is a partial order used to interpret intuitionistic implication and f is a R-monotone
function used to interpret temporal operators. The logic ITL® was recently
introduced by Boudou et al. [1]. They showed that the satisfiability and validity
problems for ITL® are decidable and left open the problem of finding a sound and
complete axiomatization for this logic.

We give a Hilbert-style axiomatization of ITL® and prove its completeness

with respect to the class K of all dynamic Kripke frames. Moreover, we show that
ITL® is complete with respect to the class Q of all dynamic Kripke frames based
on the set of rational numbers.

This work is a part of my PhD thesis under supervision of Prof. Morteza
Moniri. The main reference is [2].

References
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